Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

  • tim

a hole of radius ""b" is drilled inside a sphere of radius "a" find the remaing volume

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

So let's do it: 1. Off course we can use double integral, but let's use single integral with defined limits. 2. Integral (f(x), a, b) means definite integral of fuction f in interval [a, b] a) Let's make uppper side of circle which during rottion in OX give us a sphere in functional view. we can define it like this: f(x)=+sqrt(R^2 - x^2) Integral(PI*((f(x)*)^2)dx,-R, +R) give us a volume of a sphere (You can imagine this of make some real mathematics calcultion to prove it. It's integral summ of simple cylinders) b) We want to substract cylinder from this spere. Let this radius be r. If you imagine the picture. You'll see that a point from which starts "cap" can be calculated like this: f(x) = r <=> r^2 = R^2-(x')^2 <=> (x') = +-sqrt(R^2-r^2); the cylinder can be defined like this: we rotate g(x)=r where x is [-sqrt(R^2-r^2), +sqrt(R^2-r^2)] c) So total volume is Integral(PI*((f(x)*)^2)dx,-x', +x') - Integral(PI*((g(x)*)^2)dx,-x', +x') = Volume. Let's clculate this. Pi* Integral( (R^2-x^2) - r^2)dx, -x', +x') = ... Notice: make variable change x=sin(t) * (x'); dx=cos(t)dt*(x') and all be ok. ----------------------------------------------------------------------------------- If you need help visualizing the cylandrical shells method, take a look at http://mathdemos.gcsu.edu/mathdemos/shellmethod/gallery/gallery.html Just imagine that your taking the sphere volume using a bunch of cylandrical shells, but them leaving a bunch of them out for the hole in the middle. So once you have you're integrated function (4Pix^3)/4), use values R (for the radius of the circle) and r (radius of the cylander) like so: (4Pi(R)^3)/4)-( 4Pi(r)^3)/4)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question