anonymous
  • anonymous
Problem set 2, problem 4
MIT 6.00 Intro Computer Science (OCW)
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I'm having trouble with problem four. For problem three, I exploited the fact that because the GCD of 6 and 9 is 3 and because 6 and 9 are three apart, any multiple of 3 > 6 is a buyable number of mcnuggets. And if the number is greater than 20, you can just subtract twenty and repeat that test. But for problem four, I'm trying to write a program that asks the user for the values of x, y, and z. Basically, it starts by asking you to set the values of the small, medium, and large sizes of mcnuggets, then proceeds to do the same test. At least, I'd like it to perform the same test. Can any advise me on a mathematical strategy/method for how solve a diophantine equation? I'm fine with doing an "exhaustive search" as the instructions say, basically looking at every possible combination of x, y, and z, but I can't figure our a way to represent that logically. Make sense?
anonymous
  • anonymous
I used a series of nested loops to test various quantities of smalls, mediums, and larges
anonymous
  • anonymous
The thing that I used to limit the loop was the total number of possible McNuggets--the problem says "find the largest number (less than 200) of McNuggets that cannot be bought in exact quantity," so if you get up to 200, you can stop. Then for me the relevant question became "If I can test total numbers of McNuggets up to a certain number, how can I test each possible combination of size-quantities that might total that number of McNuggets?"

Looking for something else?

Not the answer you are looking for? Search for more explanations.