anonymous
  • anonymous
What does it mean for a differential equation to be homogenous? I don't quite understand the notation in the definition.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
shadowfiend
  • shadowfiend
I believe it basically means that if you add together a set of solutions, you still get a solution, and multiples of solutions are likewise solutions to the differential equation. Hope someone else can expand further :)
anonymous
  • anonymous
So how can I recognize a homogenous equation?
anonymous
  • anonymous
If a differential equation is in terms of y (i.e. y'' + y' + y, etc.), it is said to be homogeneous as long as there is no term without a y. So for example $$\frac{dy}{dx} + y = 0$$ is homogeneous, but $$\frac{dy}{dx} + y = 13$$ is not, because the 13 is not in terms of the y.

Looking for something else?

Not the answer you are looking for? Search for more explanations.