Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

what is the exact difference between mean value theorem and average value when it comes to integration?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
The average value of a derivative is the mean value of its underlying function. So if you have \(f(x)\) and its derivative \(f'(x)\), the average value of \(f'(x)\) is the mean value of \(f(x)\). In essence, this means that \(f'(x)\) between two points \(a) and \(b\) must at some point equal its own average value between those two points.
The average value formula, 1/(b-a) * Integral f(x)dx from a to b, gives the average y-value of function f between a and b. The mean value theorem (MVT) says take any smooth curve. Select two points on that curve and connect them with a straight line. MVT guarantees that somewhere between the two points, there will be a tangent line that is parallel to the line connecting the two points.
thanks guys, i finally get it!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Actually MVT of integration says that on (a, b) there exist a c such that f(c) = 1/(b-a) * Integral f(x)dx, and the proof is a lot easier than the derivative one

Not the answer you are looking for?

Search for more explanations.

Ask your own question