anonymous
  • anonymous
What is the difference between a factor of a quadratic equation and a zero of a quadratic equation?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
shadowfiend
  • shadowfiend
Generally speaking, a factor is the component of a quadratic equation that gives you a zero. For example, if you have the quadratic equation \(x^2 - 4\), you can *factor* it into two parts: \[x^2 - 4 = (x + 2)(x - 2)\] \(x + 2\) and \(x - 2\) are the *factors*, and they give you the two *zeros*, which are 2 and -2. A zero is the value of x at which the parabola that the quadratic formula describes crosses the y axis (i.e., has a value of 0). A factor is a part of the equation. Multiplying all the factors together gives you the original equation.
anonymous
  • anonymous
Shadowfiend is correct, with one small "oops." The zeros are where the curve of the equation crosses the X-axis, not the y-axis. So in the example above, the parabola crosses the x-axis at 2 and -2; it crosses the y-axis at -4. (The constant term of a polynomial is always the y-intercept.)
shadowfiend
  • shadowfiend
Hah! Yes indeed, where it crosses the X axis. Thanks for the catch, LBickford :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.