is the series (n=1 to infinity) for: -1/(x+1) divergent or convergent, and how do you prove it?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

is the series (n=1 to infinity) for: -1/(x+1) divergent or convergent, and how do you prove it?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

is it (-1)^{n}/(x+1) ? otherwise the answer would be -1/(x+1) since the function or sequence you are looking at does not depend on n.
\[(-1)^{n}/(x+1)\]
Sorry, I meant for -[(1)/(n+1)], I shouldn't have included x. Since this is in general harmonic form, can I say it is divergent? Thanks.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes. look at limit comparison test
actually, if you look at the sequence, if the entire thing is negative, then you can just do comparison test to harmonic series. just take absolute value of your sequence first
That makes sense, thanks a bunch :D

Not the answer you are looking for?

Search for more explanations.

Ask your own question