Determine the domain or range of a function---I need help!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine the domain or range of a function---I need help!

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Can you post which function you're trying to find the domain/range of?
I tell my students, domain is all values of x that don't "cause problems" for the function. Problems include negatives inside square roots, dividing by zero, etc. A function like y = 2x + 1 has no problems, so the domain is all real numbers. A function like \[y=1/(x^2-1)\] can't have division by zero, so we must exclude 1 and -1; therefore, the domain is all real numbers except 1 and -1. A function like \[y=\sqrt{4-x^2}\] has a problem whenever 4 - x^2 is negative, so all those values of x must be excluded. Range is for y, and it's all the y values that are produced by the function. Suppose you have the function y = x^2, a parabola. Since all squares are positive, there is no way for the function to produce a negative value for y. Therefore the range is all non-negative real numbers. That help?
Well my problem is: What is the domain of the function f(x)= 1/3 x + 3 when the range is {0, 3, 6} ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

So in this case, you have the values of \(y\) (or in this case, \(f(x)\)), and you want to find the valid values of \(x\). To do that, you just solve the three equations with \(f(x)\) set to each of the three values they give you for the range, and the values of \(x\) for those equations will be the domain of the function.
So I have to replace f or x with one of the three numbers {0,3,6} ?
f.
Okay thanks!
No problem!

Not the answer you are looking for?

Search for more explanations.

Ask your own question