anonymous
  • anonymous
Find Three consecutive integers such that the square of the second increased by the third is 43
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
sid1729
  • sid1729
They are 3 consecutive integers. Let the first one be X, the second will be X + 1 and the third will be X + 2. Now, according to the problem statement, the square of the second is (X+1)^2. Increasing this by the third means : \[(x+1)^2+(x+2) \] where (X + 2) is the third number. So, the equation is : \[(x+1)^2 + (x+2) = 43\] Solve it for x, and you can get the three consecutive integers.

Looking for something else?

Not the answer you are looking for? Search for more explanations.