A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 5 years ago
Let A be an nxn matrix and c a scalar. Show that det(cA) = c^n * det(A)
anonymous
 5 years ago
Let A be an nxn matrix and c a scalar. Show that det(cA) = c^n * det(A)

This Question is Closed

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0One property of the determinant is that if you multiply an entire row (or entire column) by some c then the new determinant is c*original. This is shown inductively: A = [a b] A' = [K*a K*b] det A = adbc [c d] [c d] det A' = KadKbc = K*det A we then use the fact that the determinant of a 3x3 is found using 2x2 minors, or more generally (N+1)x(N+1) using NxN. This property is seen to remain true by induction. c*A where a is nxn is multiplying n rows by c, so if we remove a constant multiplication of a row one at a time we find c^n as a constant multiplied by the determinant, ie: det (cA) = c^n*det(A)
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.