A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

anonymous

  • 5 years ago

Let A be an nxn matrix and c a scalar. Show that det(cA) = c^n * det(A)

  • This Question is Closed
  1. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    One property of the determinant is that if you multiply an entire row (or entire column) by some c then the new determinant is c*original. This is shown inductively: A = [a b] A' = [K*a K*b] det A = ad-bc [c d] [c d] det A' = Kad-Kbc = K*det A we then use the fact that the determinant of a 3x3 is found using 2x2 minors, or more generally (N+1)x(N+1) using NxN. This property is seen to remain true by induction. c*A where a is nxn is multiplying n rows by c, so if we remove a constant multiplication of a row one at a time we find c^n as a constant multiplied by the determinant, ie: det (cA) = c^n*det(A)

  2. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.