anonymous
  • anonymous
determine if the vector b is in teh span of the columns of the matrix A A= 1 2 3 4 5 6 7 8 9 b= 10 11 12
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
shadowfiend
  • shadowfiend
I *believe* the way to do this is to see if there is a multiple of each of the column vectors of \(\bf{A}\) that will produce \(\vec{b}\).
shadowfiend
  • shadowfiend
But don't quote me on that!
anonymous
  • anonymous
do you row reduce it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

shadowfiend
  • shadowfiend
Hm, no a multiple of the sums. So I believe you have to break down the columns into three vectors: \[\begin{align} \bf{A} = \left[\begin{matrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{matrix}\right] \end{align}\] You turn this into three vectors: \[\begin{align} \vec{a_1} = \left[\begin{matrix}1\\4\\7\end{matrix}\right] & \vec{a_2} = \left[\begin{matrix}2\\5\\8\end{matrix}\right] & \vec{a_3} = \left[\begin{matrix}3\\6\\9\end{matrix}\right] \end{align}\]
shadowfiend
  • shadowfiend
Then, if you can find an \(x, y, z\) such that: \[x\vec{a_1} + y\vec{a_2} + z\vec{a_3} = \vec{b}\] Then I believe \(\vec{b}\) is in the span of the columns of \(\bf{A}\).
shadowfiend
  • shadowfiend
You end up with a system of 3 equations, one for each of the rows multiplied by x/y/z, and you can solve to see if there is a solution for x/y/z.
anonymous
  • anonymous
then do u do the agumented of row reduced?
shadowfiend
  • shadowfiend
I have no idea! Hehe. Like I said, I don't remember *too* much about this, and I've posted more or less everything I do remember. Sorry :/
anonymous
  • anonymous
okay thank you :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.