anonymous
  • anonymous
I am having trouble with exponents, can anyone help? (2m^2q^-1)^3(mx)^-1 -------------------- (8qx^1/2)^2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
So, you have \[(2m^2q^{-1})^3(mx)^{-1} \over (8qx^{1/2})^2\] We have to simplify this. When you have exponent in the form \[(a^n)^m\] you can rewrite this as \[a^{nm}\] (and vice versa of course). This gives us simpler expression: \[(8m^6q^{-3})(mx)^{-1} \over x(8q)^2\] We can simplify better because we have negative exponents. Negative exponents have the following property: \[a^{-n} = {1 \over a^n}\] Now, move negative exponents from numerator to denominator: \[8m^6 \over mq^3x^2(8q)^2\] So, we got rid off negative exponents. Now, notice that we have \[m\] in numerator and denominator, \[{a^n over a^m} = a^{n-m}\] So, we get: \[8m^5 \over q^3x^2(8q)^2\] You've probably noticed that we have here untouched \[(8q)^2\] We have to use this property now: \[a^n * a^m = a^{n+m}\] and this gives us: \[8m^5 \over 64x^2q^5\] Now, divide by 8: \[m^5 \over 8x^2q^5\]
anonymous
  • anonymous
Lovely explanation, but YOU did all the work.

Looking for something else?

Not the answer you are looking for? Search for more explanations.