anonymous
  • anonymous
Find the length of the curve given by r (t) = ((2^0.5)/2) t)i+(e^t/2)j+(e^−t/2)k, where −2 =< t =< 7.
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
okay - so let me take a shot at it. Since you are given a function r(t) in terms of all vector component, what needs to be done is to take partial derivatives of each components in terms of t. Then square each terms and add them, put the sum of squared partials under square root and integrate over the range of t then that should be the length of your curve.
anonymous
  • anonymous
i did that and got ((1/2)+(1/4)e^t+(1/4)e^-t )^(1/2) so i have to integrate that.
anonymous
  • anonymous
that would be something like... \[s = \int\limits_{t_{i}}^{t_{f}} \sqrt((\delta x/\delta t)^2 + (\delta y/\delta t)^2 + (\delta z/\delta t)^2)) dt\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
something along this line
anonymous
  • anonymous
be sure that dt is not under square roots

Looking for something else?

Not the answer you are looking for? Search for more explanations.