A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

anonymous

  • 5 years ago

Prof says answer is 5 to the following: lim as x goes to 0 of (sin 5x)/x. is he right and how does it work?

  • This Question is Closed
  1. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    hi big nose

  2. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    let u = 5x

  3. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    as x ->0 , u -> 5*0 = 0 , and u = 5x so u/5 = x now we have lim u-> 0 sin u / ( u/5) = lim 5 * sin u/u

  4. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    we know that lim sin x / x as x goes to zero is 1, this is a known fact or theorem. you can prove it seperately using squeeze theorem or by geometry

  5. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    so lim 5 * sin u/u = 5 * lim sin u/u = 5 * 1

  6. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\lim_{x \rightarrow 0} \sin(5x)/x\] produces the indeterminate form 0/0, so you can use L'Hopital's rule that: \[\lim_{x \rightarrow a}f(x)/g(x) = \lim_{x \rightarrow a} f \prime (x) / g \prime (x)\] (keep in mind that you can only use this if the original limit produces 0/0 or infinity/infinity!). So, applying the rule gives us: \[\lim_{x \rightarrow 0}5\cos(x)\] cos(0) is one, so the answer is 5.

  7. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.