• anonymous
Find the volume of the solid that results when the region enclosed by y=x^1/2, y=0, and x=121 is revolved about the line y=121
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • swilliams
What we have here basically is two revolutions, so we can subtract the volume of the inner from the outer to get the final answer. To find the volume of each, we just integrate the area of the circle (pi * r ^ 2) over our interval (in this case from x=0, since sqrt(x) is not real where x < 0, to the given x=121). So with subtracting/simplifying: \[V = \pi \int\limits\limits\limits_{0}^{121}R_{outer}(x)^2 - R_{inner}(x)^2dx \] Where R(x) is the radius as a function of x. The radius of the outer circle is going to be (121 - 0), or 121, the distance between y=0 and the axis of revolution. The radius of the inner revolution, then, is going to be (121 - sqrt(x)). If we plug these into our equation, we get: \[V = \pi \int\limits\limits\limits\limits_{0}^{121}121^2 - (121 - \sqrt{x})^2dx\] So V equals about 651610.8823.
  • anonymous
Thank you so much. : ) I see where I went wrong in my work. For some reason I put my limits from 0 to 11 instead of 0 to 121. Thanks again.

Looking for something else?

Not the answer you are looking for? Search for more explanations.