anonymous
  • anonymous
Find an equation of the line satisfying the conditions given. Express your answer in standard form. Parallel to 3x - y = -5 and passing through ( -1, 0 )
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

bahrom7893
  • bahrom7893
If it is parallel to the line 3x - y = -5, then it must have the same slope as that line: Let me rewrite your equation, so that it is easier for me to see the slope: 3x - y = -5, move 3x to the right hand side: - y = - 5 - 3x, multiply thru by -1: y = 5 + 3x or y = 3x +5. This is in the form of y = Mx + b, where M = slope = 3
bahrom7893
  • bahrom7893
Okay so now the formula of the line is: \[y - y _{1} = M ( x - x _{1})\] In your case: \[x_{1} = -1\] and \[y_{1} = 0\] ( -1 ; 0 )
bahrom7893
  • bahrom7893
so you know that M = 3; x1 = -1 and y1 = 0. Plug these into the equation of a line above: y - ( 0 ) = 3 * ( x - (-1) ) Simplify: y = 3x + 3 <=Your answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

bahrom7893
  • bahrom7893
any questions?

Looking for something else?

Not the answer you are looking for? Search for more explanations.