anonymous
  • anonymous
A particle is moving along the curve y=3 sqrt 2x+5 . As the particle passes through the point (2,9), its -coordinate increases at a rate of 4 units per second. Find the rate of change of the distance from the particle to the origin at this instant
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Differentiating the equation wrt time dy/dt=3dx/dt (2x+5)^(-1/2) As dy/dt=4, we can put x=2 for the given point and find that dx/dt=4. distance from origin R= sqrt (x^2 + y^2) We have to find dR/dt = [xdx/dt + ydy/dt]/[sqrt D] Knowing x,y, dx/dt and dy/dt at that point we can evaluate the answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.