A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

anonymous

  • 5 years ago

how can I simpify the following (preferably, without using a calculator): a) (3^3)/(squareRoot(3^5)) b) 4ln(squareRoot(x))+6ln(x^(1/3)) p.s. i use squareRoot() beacause i dont know how to write a root symbol.

  • This Question is Closed
  1. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Is this the correct form? a) \[3^3 / \sqrt{3^5}\] b) \[4 \ln \sqrt{x} + 6lnx^{1/3}\] I won't be able to get back to you for a while, so sorry if I can't continue to help. But my advice for a) is to first convert the denominator into a form in which simplifying is simple. For b) remember your logarithmic identities, and combine the terms into a simplified logarithm; once again, remember your special rules with exponents (and logarithms!). Good luck!

  2. anonymous
    • 5 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Here are the rules: For a) \[x^{a}x ^{b}=x ^{a+b}\] *remember you can rewrite a root as a fractional exponent, and a denominator as a negative exponent, for example: \[\sqrt{x}=x ^{1/2}\] \[1/\sqrt{x}=x ^{-1/2}\] For b) \[a \ln (x)=\ln (x ^{a})\] and \[\ln (a)+\ln (b)=\ln (ab)\] Hope that helps!

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.