• anonymous
Let a be a fixed nonzero vector in R-n. (a) Show that the set of S of all vectors x such that a dot x = 0 is a subspace of R-n. (b) Show that if k is a nonzero real number, then the set A of all vectors x such that a dot x = k is not a subspace. Thanks in advance.
  • katieb
See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
Well (a) is just the nullspace of the vector space characterized by A. (b) is solving a system of equations in which the space characterized is not closed under addition. I think.

Looking for something else?

Not the answer you are looking for? Search for more explanations.