anonymous
  • anonymous
it says write a polynomial function of minimum degree in standard form with real coefficients whose zeros and their multiplicities include those listed: -1 (multiplicity 2), -2 -i (multiplicity 1). Can anyone help?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
If you know the zero (root) of a function, you know a factor of it. Turn a zero into a factor by plugging the zero into (x - zero). For example, if 3 is a zero, then (x - 3) is a factor. Multiplicity just means how many times a particular factor is used. Multiplicity 2 means the factor is squared. So, take all your factors (you'll have 3 in your example) and multiply them together (or just write them side by side if you don't need to FOIL out) and you're done.
anonymous
  • anonymous
Thank you!
anonymous
  • anonymous
There's one more thing you'll need. If a real polynomial has a complex root, say a + bi, then it also has the root a - bi, called the complex conjugate of a + bi. So our polynomial actually has an additional root -2 + i, which is stealthily hidden in the list they gave.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.