anonymous
  • anonymous
3 1 0 1 1 3 1 0 0 1 3 1 0 0 1 3 find the determinant of this matrix. I do not remember how to do it step by step
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
There might be a trick to this one. But there are a lot of zeros in the matrix, so you can exploit that. One way is to just use cofactor expansion. So the determinant is just \[3\left( (3 & 1 & 0 \ 1 & 3 & 1 \ 0 & 1 & 3) \right) + (-1)1\left( (1 & 0 & 0 \ 1 & 3 & 1 \ 0 & 1 & 3) \right)]. If you’ve forgotten cofactor by expansion, it’s hard to explain typing it here, but I’d recommend either going to Paul’s Online Math Notes for written explanation with examples or khanacademy.org for spoken explanation of it.
anonymous
  • anonymous
\[3\left( (3 & 1 & 0 \ 1 & 3 & 1 \ 0 & 1 & 3) \right) + (-1)1\left( (1 & 0 & 0 \ 1 & 3 & 1 \ 0 & 1 & 3) \right)]\
anonymous
  • anonymous
I apologize, let me try that one last time. \[3\left( (3 & 1 & 0 \ 1 & 3 & 1 \ 0 & 1 & 3) \right) + (-1)1\left( (1 & 0 & 0 \ 1 & 3 & 1 \ 0 & 1 & 3) \right)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.