anonymous
  • anonymous
finding the value of a in the given equations through gaussian elimination x+y+z=2 x+3y+2z=5 x+y+(a^2-1)z=a
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
(a^2)z + 2z - a - 2 = 0.
anonymous
  • anonymous
You can't find a specific numerical value for a, since there will be infinitely many solutions, a different solution parametrized by a different value of a. Let’s write this system in matrix form: 1 1 1 2 1 3 2 5 1 1 (a^2 – 1) a. Then reduce. 1 1 1 2 0 2 1 3 0 0 (a^2 – 2) (a – 2). So we get: 1 1 1 2 0 2 1 3 0 0 1 (a – 2)/(a^2 – 2). We can let “a” be anything such that the denominator isn’t equal to 0. For example, let a = 2. Then that forces z to be 0. Then back substitute into 2y + z = 3 to see that y = 3/2. Then back substitute into x + y + z = 2 to get x = 1/2. We can check that (1/2 , 3/2, 0) solves our system. But we can let a = 1 as well. If we do, we get z = 1. Back substituting into 2y + z = 3 gives y = 1. Back subbing into x + y + z = 3 gives x = 0. So (0, 1, 1) is another solution corresponding to a = 1.

Looking for something else?

Not the answer you are looking for? Search for more explanations.