anonymous
  • anonymous
Determine the convergence or divergence of the series. (2n)!/[(n-1)3^n]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Diverge, because n! has a higher order than b^n for any constant b.
mathteacher1729
  • mathteacher1729
Do you mean \[\frac{n!}{(n-1)3^n}\] or \[\frac{n!}{(n-1)^{3n}}\] ?
mathteacher1729
  • mathteacher1729
Either of those is sequence, not a series. A sequence effectively a list of numbers. A series tells you to "add up all the numbers in the sequence."

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Regardless of whether they're sequences or series, the nth terms don't converge anyway. I didn't notice the second interpretation. Hmm...

Looking for something else?

Not the answer you are looking for? Search for more explanations.