anonymous
  • anonymous
How do I find the domain of the function in this problem? f(x)=x/3x-1
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
The domain required, if we're talking about only real numbers here, is when imputing an x into the denominator to make the denominator NOT 0. Therefore, the domain is when \[x \neq 1/3\]
anonymous
  • anonymous
anonymous
  • anonymous
Now what about the infinite union?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathteacher1729
  • mathteacher1729
Now what about the infinite union? If your function is \[ f(x)=\frac{x}{3x-1} \] the domain is exactly \[x\neq \frac{1}{3}\]. Representing this as a union would be: \[(-\infty , \frac{1}{3}) \cup (\frac{1}{3}, \infty \]
mathteacher1729
  • mathteacher1729
I forgot to close the parenthesis: \[(-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \infty)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.