anonymous
  • anonymous
Approximate the integral using Simpson's rule S10 integral from 1 to 2 lnx^(3/2) dx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Pigg, are you going to answer this, or give me 3 mins for me to figure it out?
anonymous
  • anonymous
All you do is just plug the information given into Simpson's rule (http://tutorial.math.lamar.edu/Classes/CalcII/ApproximatingDefIntegrals_files/eq0026MP.gif) a=1, b=2, n=10, thus change in x:[(b-a)/n]=1/10, more info at http://tutorial.math.lamar.edu/Classes/CalcII/ApproximatingDefIntegrals.aspx
anonymous
  • anonymous
\[\Delta x = (2-1)/n = 1/10.\] so do EACH one of the subdivisions separately.... f(a) = ln(1)^(3/2) = (3/2)*ln(1) f(a+\[\Delta x\] = ln(1+1/10)^(3/2) = (3/2)*ln(1.1) and so on... you got the busy work, and then sum all 10 divisions up. or you can cheat and use the calculator Flyinpigg linked.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
try clicking on the links pal
anonymous
  • anonymous
Thanks alot for the help, it cleared up some confusion. : )

Looking for something else?

Not the answer you are looking for? Search for more explanations.