Hello, I am preparing for my Fundamentals of Engineering Exam. Here is math problem that I have below which I am having difficulty with: Given: dy(1)/dx = 2/13 (1 + 5/2x - 3/2 - 3/4k) What is the value of k such that y(1) is perpendicular to the curve y(2)=2x at x=1? I have the solution to this problem if you need to see it (Which I don't understand.) Thanks!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Hello, I am preparing for my Fundamentals of Engineering Exam. Here is math problem that I have below which I am having difficulty with: Given: dy(1)/dx = 2/13 (1 + 5/2x - 3/2 - 3/4k) What is the value of k such that y(1) is perpendicular to the curve y(2)=2x at x=1? I have the solution to this problem if you need to see it (Which I don't understand.) Thanks!

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The notation you're using is a bit difficult to read. There is an "equation" button on the lower left hand corner of the text box which might make things easier. Here's my attempt to re-write your problem: \[\frac{dy_1}{dx}=\frac{2}{13}(1+\frac{5}{2}x-\frac{3}{2}-\frac{3}{4}k\] Find \[k\] such that \[y_1\] is perpendicular to \[y_2=2x\] when \[x = 1\] ?
Sorry, should be \frac{dy_1}{dx}=\frac{2}{13}(1+\frac{5}{2}x-\frac{3}{2}-\frac{3}{4}k) I forgot to close the parenthesis.
\[\frac{dy_1}{dx}=\frac{2}{13}(1+\frac{5}{2}x-\frac{3}{2}-\frac{3}{4}k\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Grrrrr! \[\frac{dy_1}{dx}=\frac{2}{13}(1+\frac{5}{2}x-\frac{3}{2}-\frac{3}{4}k)\]
let value of dy1/dx at x=1 be c. c x dy2/dx =-1 2c=-1 solve the equation
dy1/dx at x=1 means substitute value of x as 1 in dy1/dx
as the two curves are perpendicular at the givn point the product of their slopes should be -1
Thank you.

Not the answer you are looking for?

Search for more explanations.

Ask your own question