• anonymous
What is the relationship between the degree of a polynomial and the number of zeros (roots) it posses? Be sure to explain in your answer how prime polynomials violate this relationship.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
If I remember correctly, a n-th degree polynomial has exactly n roots, although they may be real or complex. A n-th degree polynomial will have at most n real roots. A prime polynomial of degree n will not have n real roots, for example: f(x) = x^2 + 4 has no real roots (try to factor it), but 2 complex ones, namely +/- 2i

Looking for something else?

Not the answer you are looking for? Search for more explanations.