Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

I have a problem with differential equations. "Solve the initial value problem: dy/dx +2y = 4x, y(0) = 2" If you can help, even if it's only pointing me in the right direction for what process I need to use, that'd be great.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

This is called the method of integrating factors. The idea is that we'd like to rewrite the Left Hand Side of y' +f(x) y = g(x) as the derivative of a product of y with some other function h(x). Notice that the derivative of y(x)h(x) is y’h + h’y. This kind of looks like y’ + f(x)*y. But to make that look even more like y’h + h’y, we can multiply y’ + f(x)*y by the function h (to be determined) to get h[y’ + f(x)*y] = y’h + (h*f)*y. So what should our function h be ? Our h should satisfy (hf) = h’ to match the expressions y’h + (hf)*y and y’h + h’y. Solving hf = h’ is easy since its separable. In this case, if we have y’ + 2y = x^2 So we’d like to multiply both sides of the equation by some h(x). And that h(x) should satisfy h*(2) = h’. Solving this gives h(x) = e^(2x) Then multiply both sides of y’ + 2y = 4x by e^(2x), recognize that the Left Hand Side is the derivative of y*e^(2x), and continue from there. Once you get the general solution, plug in the initial values to get the specified solution.
Thanks a lot verifry.
I had some notes that showed it, but the process was completely lost on me. A massive help.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

No problem.

Not the answer you are looking for?

Search for more explanations.

Ask your own question