anonymous
  • anonymous
how do you prove that a quadrilateral is a kite?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
By definition of kite, you'd like to show that it has two pairs of adjacent sides which are congruent.
anonymous
  • anonymous
so if you have a quad BIRD and ID bisects RB and BI is congruent to IR how do u prove its a kite..?
anonymous
  • anonymous
Let me see.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ohkay thankyou.
anonymous
  • anonymous
Dude sorry for the delay my computer's so lagging like crazy. First, you can show that IRB is an isosceles triangle with vertex I. Then if ID bisects RB, it follows that ID is perpendicular to RB since if you drop the bisector down from the vertex, that bisector is perpendicular to the side it’s bisecting. So ID is perpendicular to RB. But then call intersection of ID and RB O. Then consider triangles ROD and BOD. We will show those are congruent. We know that RO = BO since RB was bisected. We also know Angle ROD = Angle BOD since both are 90 degrees. And OD = OD itself. So by SAS, the triangles are congruent. Therefore, RD = BD. So now we have RD = BD, and also IR = IB, since that triangle was isosceles. Therefore, we have a kite.
anonymous
  • anonymous
what wpuld be the reason for RO and BO to be perpendicular?! and what would be the reason for RD = BD and IR=IB... CPCTC?
anonymous
  • anonymous
RO and BO are not perpendicular. They lie on the same line segment. But ID and BR are perpendicular. This is because in an isosceles triangle, if you drop the bisector from the top vertex, then it is actually a perpendicular bisector. Yes, RD and BD are equal because CPCTC. ROD and BOD were shown to be congruent. IR and IB are congruent by assumption.

Looking for something else?

Not the answer you are looking for? Search for more explanations.