• anonymous
Consider the differential equation \dfrac{dy}{dx}=4\sqrt{y}e^{2x} Solve for the particular solution y=f(x) to the given differential equation, with the initial condition f(0)=0.99. Then find and report, to two places after the decimal, f(1). [Remember: Do not round intermediate values. Specifically, never copy numbers down from the calculator and retype it into the calculator. If you're going to need a value for later, then store it.]
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this
and thousands of other questions

  • anonymous
This looks separable. You can move all the y's and dy's to one side and all the x's and dx's to the other. You'd get h(y)dy = g(x)dx. Integrate both sides.
  • anonymous
.thank you,

Looking for something else?

Not the answer you are looking for? Search for more explanations.