someone please help. "the radius of a circle is increasing at a constant rate of 0.2 meters per second. in terms of (pie) what is the rate of increase in the area of the circle at the instant when the circumference of the circle is 20(pie) meters?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

someone please help. "the radius of a circle is increasing at a constant rate of 0.2 meters per second. in terms of (pie) what is the rate of increase in the area of the circle at the instant when the circumference of the circle is 20(pie) meters?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You have the change in radius over time, dr/dt. You want the change in area over time, dA/dt. Think in terms of multiplying fractions: dr/dt = dA/dt times what? Well, the "what" must cancel the dA we don't want and introduce the dr we need. Thus we have dr/dt = dA/dt times dr/dA. Your task now is to find a formula that relates r and A (that should be easy). Solve for r and take the derivative with respect to A; that's dr/dA. Then just muliply as indicated at the top of this paragraph, using the value of r implied in the problem. Okay?
i'm still a little confused with this
You'll have to tell me where you're confused and why if you want more. This is several pages in your textbook and I can't type that much. :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i understand the dr/dt. and the da/dt. i know i'm looking for da/dt. but the multiplying paRt confused me. A=(pie) R(squared) and the derivative of that isDa/Dt= 2(pie) Dr/Dt right? can i just plug in 0.2 which is Dr/Dt?
that way i get Da/Dt?
Okay, I think I typed something backwards. Sorry. You want da/dt, right? So my equation should have said da/dt = dr/dt (known) times da/dr. If we can find da/dr, we're home free. Begin with a = pi r^2 and take the d/dr of both sides to get da/dr = 2 pi r (not quite what you have -- I'm applying d/dr, not d/dt). The 0.2 is dr/dt, as you said, and yes, you can plug that in. So multiply dr/dt (0.2) by 2 pi r (you'll need to calculate the correct r from the circumference given) and you're done. Good?
ok cool. i had that in mind but wasn't quite sure thanks for the reassurance. :)
Good for you.

Not the answer you are looking for?

Search for more explanations.

Ask your own question