anonymous
  • anonymous
suppose f(x)+ x^4[f(x)]^3=1028 and f(2)=4, find f`(2) How do I start this?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bahrom7893
  • bahrom7893
YAY differentiation!
bahrom7893
  • bahrom7893
F(x) + x^4 [f(x)]^3 = 1028
bahrom7893
  • bahrom7893
let me replace f(x) by y so that its easier to type

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

bahrom7893
  • bahrom7893
y + x^4*y^3 = 1028; Use implicit differentiation: dy/dx + (x^4 * 3y^2 *dy/dx + 4x^3 * y^3) = 0
bahrom7893
  • bahrom7893
I used the chain rule to differentiate that x^4*y^3
bahrom7893
  • bahrom7893
So now just replace dy/dx by f'(x) and y by f(x), and then find the values at 2: f'(2) + (2^4 * 3 * [f(2)]^2 * f'(2) + 4*2^3 * [f(2)]^3) = 0
bahrom7893
  • bahrom7893
Replace f(2) by 4, because f(2) = 4 and simplify a bit: f ' (2) + (16 * 3 * 4^2 * f ' (2) + 4 * 8 * 4^3) = 0 f ' ( 2 ) + 768 * f ' ( 2 ) + 2048 = 0
bahrom7893
  • bahrom7893
wait sorry i made a typo
bahrom7893
  • bahrom7893
checkin my arithmetic... i hate typing out math solutions
bahrom7893
  • bahrom7893
okay so here we go: \[y + x^4 * y^3 = 1028\] \[dy/dx + x^4 * 3y^2 (dy/dx) + y^3 *4x^3 = 0\] \[dy/dx( 1 + x^4 * 3y^2 ) = -y^3 * 4x^3\]
bahrom7893
  • bahrom7893
\[dy/dx = (-y^3*4x^3)/(1+x^4*3y^2)\]
bahrom7893
  • bahrom7893
okay now you know that f(2) is 4, therefore to find f' or dy/dx at x = 2, replace all ys by 4 and xs by 2
bahrom7893
  • bahrom7893
\[dy/dx = (-4^3 * 4*2^3) / (1 + 2^4 * 3* 4^2)\]
bahrom7893
  • bahrom7893
dy/dx = (-2048)/769
bahrom7893
  • bahrom7893
dy/dx = -2048/769
bahrom7893
  • bahrom7893
I don't like the number.. don't know why, but i triple checked my math...
bahrom7893
  • bahrom7893
WOOOT! Thanks for fanning, whoever you are, lol I'm a superhero now!

Looking for something else?

Not the answer you are looking for? Search for more explanations.