anonymous
  • anonymous
use the binomial theorem to show that 2^n > n(n-1)(n-2)/3! true for all n in natural numbers
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

sid1729
  • sid1729
Couple of tricks here. Let's take the right hand side \[\frac{n(n-1)(n-2)}{3!}\] Multiply both numerator and denominator by (n-3) \[\frac{n(n-1)(n-2)(n-3)!}{(n-3)!3!}\] The numerator clearly becomes n! Thus, the RHS can be written as : \[{n}\choose3\] Now, write 2^n as \[(1+1)^n\] If you expand it, it will look like: \[{n \choose 0} 1^n + {n \choose 1}1^{(n-1)}1^1 + {n \choose 2}1^{n-2}1^2 + {n \choose 3} 1^{n-3}1^3 + ...\] The fourth term in this expansion is basically the RHS. So, by this manipulation, we find that 2^n = RHS + some positive terms (cause n is natural), hence we prove the given inequality.
anonymous
  • anonymous
:O thats like so easy.........haha thanks i totally missed that answer on my exam then

Looking for something else?

Not the answer you are looking for? Search for more explanations.