A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 5 years ago
If AX = B is an n X n system of equations over the integers, how do I show that it has integer solutions if det(A) = +1 or 1
anonymous
 5 years ago
If AX = B is an n X n system of equations over the integers, how do I show that it has integer solutions if det(A) = +1 or 1

This Question is Closed

anonymous
 5 years ago
Best ResponseYou've already chosen the best response.0If det A = +1 or 1, then A is invertible, since it has nonzero determinant. Therefore, the unique solution to Ax = b is x = inv(A)*b. The question is, why would x have only integers? Well, we know that b is a column vector of only integers. Can we show that the matrix A only has integers too? Actually, inv(A) does only have integers. One of the theorems about inverses and determinants (after you’ve learned about cofactor expansion of determinants) Is that inv(A) = (1/det A) * adj(A), where adj(A) is the matrix of cofactors from A. But the matrix A is all integers, so the cofactors will all be integers. Therefore, adj(A) is full of integers, and so inv(A) is too. So in the end, x will be a solution with only integers. For more on cofactors or the theorem, go to http://tutorial.math.lamar.edu/Classes/LinAlg/MethodOfCofactors.aspx
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.