Help, Evaluating Intergrals using substitution prior to intergration by parts.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help, Evaluating Intergrals using substitution prior to intergration by parts.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits e^\sqrt(3s+9)\]
let a = 3s + 9, then da = 3ds then multiply and divide by 3, to get the 3*ds in da (1/3) Int(e^(sqrt(a)) da)
but that's not going to help!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes it will
\[\int\limits_{}^{}e^\sqrt{a}da\]
(1/3) * \[\int\limits_{}^{}e^\sqrt{a}da\]
what about the u & dv?
now let b^2 = a
da = 2b*db
wait i got lost myself..
hey there sorry i gtg now, but i found how to integrate e^sqrt(x) here: http://answers.yahoo.com/question/index?qid=20080903004829AAGDQnl GOOGLE WORKS WONDERS!!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question