anonymous
  • anonymous
Help, Evaluating Intergrals using substitution prior to intergration by parts.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits e^\sqrt(3s+9)\]
bahrom7893
  • bahrom7893
let a = 3s + 9, then da = 3ds then multiply and divide by 3, to get the 3*ds in da (1/3) Int(e^(sqrt(a)) da)
anonymous
  • anonymous
but that's not going to help!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

bahrom7893
  • bahrom7893
yes it will
bahrom7893
  • bahrom7893
\[\int\limits_{}^{}e^\sqrt{a}da\]
bahrom7893
  • bahrom7893
(1/3) * \[\int\limits_{}^{}e^\sqrt{a}da\]
anonymous
  • anonymous
what about the u & dv?
bahrom7893
  • bahrom7893
now let b^2 = a
bahrom7893
  • bahrom7893
da = 2b*db
bahrom7893
  • bahrom7893
wait i got lost myself..
bahrom7893
  • bahrom7893
hey there sorry i gtg now, but i found how to integrate e^sqrt(x) here: http://answers.yahoo.com/question/index?qid=20080903004829AAGDQnl GOOGLE WORKS WONDERS!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.