anonymous
  • anonymous
can some explain kernel and image to me?
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
The image is simply the column space, while the kernel is the nullspace (the set of vectors that map to the 0 vector in the space). It's hard to explain everything without knowing how deep your background in math is.
anonymous
  • anonymous
well i'm in linear algebra and i we're just learning the section on kernel and image and i'm a bit confused while doing the homework. so what i'm gathering is that is you have a matrix with two columns the image of that matrix is v1 and v2. and to find the kernel of the same matrix you would set it equal to zero and solve for the variables?
anonymous
  • anonymous
So, if you have some mapping such that Ax=b, and A were composed of two column vectors v1, v2... The image would be any linear combination of v1 and v2. The kernel would be all solutions to Ax=0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok so does the image relate the transformation of x to b?
anonymous
  • anonymous
You can think of the image as the set of all values in the domain that produce a valid mapping to the range. Ax=b is a system of equation characterized by a mapping matrix A. So say A were mxn. A would be mapping some m-dimensional space to another n-dimensional space.
anonymous
  • anonymous
ok so A is a like a function?
anonymous
  • anonymous
If you think about it in terms of mappings, A is like a transformation. Keep in mind that for something to be a function, it has to be one-to-one. If you don't want to think about the heavier math parts, just think of A as the matrix, when applied to some x, produces b (or better yet, the coefficient matrix for a system of linear equations).
anonymous
  • anonymous
ok i got it. so the image is the vectors of A? and the kernel is the solutions when Ax=b=0?
anonymous
  • anonymous
Kernel is when Ax=0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.