find the linear approximation L(x) of the function f(x)=cos(9x) at a=pi/2 is L(x)=A+Bx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the linear approximation L(x) of the function f(x)=cos(9x) at a=pi/2 is L(x)=A+Bx

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

okay workin on it
L(x) = f(a) + f'(a)(x - a)
f'(x) = -Sin(9x) * 9

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

f'(pi/2) = -9Sin(9pi/2) = -9*1 = -9
And f(pi/2) = Cos(9pi/2) = 0
ok whats A and what B
L(x) = 0 - 9(x-pi/2) L(x) = A + Bx (<--was this right, i keep forgetting the format?)
yes but i do not know how u got ur answer at all
Oh okay so let me explain... L(x) = f(a) + f'(a)(x - a) <-Linear approximation formula
i got that
Now for that you are going to need: f(a), f'(a) and x-a
f(a) = f(pi/2)
f(pi/2)=cos(9[pi/2]) = 0
i got that the cos (9pi/2)= a decimal
what is ur calculator's mode in? I bet it's in degrees.. supposed to be in radians
pi/2 is a radian measure, not degree measure..
try again? change the mode and find Cos(9pi/2)
i am in radians
okay can u go to mode and type in the values u have in here?
dont kno how
what calculator are u using?
ti 83
okay press MODE
now type whatever u see in that screen here
MODE is right next to 2nd key
i see stuff like normal Sci Eng FLoat 0123456789 Radia Degree Func PAr Pol Seq
what are the values, wait nevermind, can u take a picture of that mode screen and upload it on tinypic.com ? no registration needed btw
dont know how to do that either
do u have a camera?
wait nevermind, trust me Cos(9pi/2) is 0
okay?
ok
L(x) = f(a) + f'(a)(x - a) <-Linear approximation formula f(a) = f(pi/2) f(pi/2)=cos(9[pi/2]) = 0
ok
f'(x) = [cos(9x)]' = USE CHAIN RULE = -Sin(9x) * 9 = -9Sin(9x)
f'(pi/2) = -9 Sin(9pi/2) = -9 * 1 = -9
L(x) = f(a) + f'(a)(x - a) <-Linear approximation formula f(a) = f(pi/2) f(pi/2)=cos(9[pi/2]) = 0 f'(pi/2) = -9 Sin(9pi/2) = -9 * 1 = -9 L(x) = f(a) + f'(a)(x - a) L(pi/2) = 0 + -9 (x - pi/2)
L(pi/2) = -9x - 9pi/2
L(pi/2) = -9x - 9pi/2 L(x) = A + Bx L(pi/2) = -9pi/2 - 9x
A = -9pi/2 B = -9
Check the answer
carra u here? I made a mistake, -9 (x - pi/2) is not -9pi/2 - 9x, its 9pi/2 - 9x
Double negative is a positive... -9 * -pi/2 is 9pi/2 not -9pi/2

Not the answer you are looking for?

Search for more explanations.

Ask your own question