Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

use implicit differentiation to find dy/dx - 2xy-y^2= 1 can someone explain step by step with formulas explaining in detail.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Let me call dy/dx y'
use product rule for -2xy and power rule for -y^2: -2x*y' + y*(-2) - 2y*y' = 0
-2xy' - 2y - 2yy' = 0, divide everything by -2: xy' + y + yy' = 0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

now move y to the right side: xy' + yy' = -y
you lost the =1
where?
-2xy-y^2 = 1 is original problem right?
yeah, but derivative of a constant is 0!
gotcha
what is the formula for implicit differentiation ?
now move y to the right side: xy' + yy' = -y take y' out: y'(x+y) = -y
there is no formula, u use a combination of several formulas
oh ah...ok let me look and little by little look into what u wrote to understand
y' = dy/dx = -y/(x+y). Fan me if I helped, thanx! =)

Not the answer you are looking for?

Search for more explanations.

Ask your own question