anonymous
  • anonymous
what is the derivative of 5cos^2(pi)(t)?
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i assume you mean 5cos^2((pi*t)) in which case; i would use the chain rule, subs u=cos(pi*t), so you have (i presume it's y), y=5u^2 dy/du = 10u and du/dt=-pi*sin(pi*t) Multiply them together, dy/dx = 10u * -pi*sin(pi*t) replace u=cos(pi*t) dy/dx=-10*pi*cos(pi*t)*sin(pi*t) And you could then use the relation that sin(2x)=2sin(x)cos(x) so dy/dx=-5*pi*sin(2*pi*t) You could alternatively use the relation that 2cos(2x)=cos^2(x)+1 and rearrange for cos^2(x) [x being pi*t] .. which is a better way if you know how to do it .. hope this helps :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.