anonymous
  • anonymous
-9x +5y=8 7X - 4Y=0 SOLVE the system of equations using the inverse of the coefficient matrix
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Rewriting this in matrix form looks like: |-9 5||x|=|8| |7 -4||y|=|0| multiplying by the inverse of the coefficient matrix on both sides yields (x,y) that solves this system. There is a simple formula for the inverse of a 2x2 matrix that involves the determinant and shifting and negating some numbers. If A = |a b| |c d| A^(-1) = [1/det(A)] |d -b| |-c a|
anonymous
  • anonymous
Also, det(A) = ad-bc = -6 So given that info, we can generate A^(-1) = (-1/6) |-4 -5| |-7 -9| and |x| = (-1/6) |-4 -5| |8| = |(32/6)| |y| = |-7 -9| |0| |(56/6)|
anonymous
  • anonymous
let me know what doesn't make sense, or if the matrices aren't readable, the equation editor won't work for me =(

Looking for something else?

Not the answer you are looking for? Search for more explanations.