-9x +5y=8 7X - 4Y=0 SOLVE the system of equations using the inverse of the coefficient matrix

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

-9x +5y=8 7X - 4Y=0 SOLVE the system of equations using the inverse of the coefficient matrix

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Rewriting this in matrix form looks like: |-9 5||x|=|8| |7 -4||y|=|0| multiplying by the inverse of the coefficient matrix on both sides yields (x,y) that solves this system. There is a simple formula for the inverse of a 2x2 matrix that involves the determinant and shifting and negating some numbers. If A = |a b| |c d| A^(-1) = [1/det(A)] |d -b| |-c a|
Also, det(A) = ad-bc = -6 So given that info, we can generate A^(-1) = (-1/6) |-4 -5| |-7 -9| and |x| = (-1/6) |-4 -5| |8| = |(32/6)| |y| = |-7 -9| |0| |(56/6)|
let me know what doesn't make sense, or if the matrices aren't readable, the equation editor won't work for me =(

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question