anonymous
  • anonymous
integral of (t^2+t)/(sqrt(t+1)) using u-substitution
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Bah, moving to here, that chat thing sucks on my computer. But yea, I'd let u = t+1 and do the factoring
anonymous
  • anonymous
So int of (u-1)(u)/sqrt(u)
anonymous
  • anonymous
Then it's (u-1)(u)(u)^(-1/2)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
From there you can easily simplify it and break it into 2 managable integrals.
anonymous
  • anonymous
right okay thanks, I had thought about factoring the numerator but didn't use the factored bit right is all
anonymous
  • anonymous
Ah, okay. Well good luck. Post if you need more help (although I'm gonna be leaving soon)

Looking for something else?

Not the answer you are looking for? Search for more explanations.