anonymous
  • anonymous
can someone please help me with these equations of definite integrals in integration? ∫ x/sqrt 2x - 1 dx from 5 to 1 ∫ e^3/x//x^2 dx from 3 to 1 -- this is e to the power 3 over x, all over x squared. I hope that makes sense.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\int\limits_{3}^{1} (e^3/x)/x^2 \] this what you mean?
anonymous
  • anonymous
kinda of... but its e to the power 3/x.
anonymous
  • anonymous
ln(2)/4 - ln(18)/4 - 2/9

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\int\limits_{5}^{1}x/(2x-1)^2\] =\[\ln(2)/4 - \ln(18)/4 - 2/9 \]
anonymous
  • anonymous
regarding e^(3/x)/x^2 the derivative of 3/x is is -3/x^2 so let use substitution u=3/x du= -3/x^2 now we can do integral e^(u)*du take out the -1/3 ofcouse. so you should have \[-1/3\int\limits_{?}^{?} e^udu \] that should push you thou now sure about my answer:D but hope i helped
anonymous
  • anonymous
thank you... any help is appreciated!! :)
anonymous
  • anonymous
lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.