f(x,y) = x/y, P=(2,1) and v= -1i -1j. Find the maximum rate of change of f at P. Find the (unit) direction vector in which the maximum rate of change occurs at P.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

f(x,y) = x/y, P=(2,1) and v= -1i -1j. Find the maximum rate of change of f at P. Find the (unit) direction vector in which the maximum rate of change occurs at P.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Find the gradient of f(x,y), evaluate it at P, and then find the dot product with v
Grad(f)=<1/y, -x/y^2> at P: <1, -2>
so the dot product is: <1, -2>*<-1, -1> = -1 + 2 = 1

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

oops. I skipped a step
<\[<-1/\sqrt{2}, -1/\sqrt{2}>\]
\[<1, -2>*<-1/\sqrt{2}, -1/\sqrt{2}>\], where * is a dot product
so the final is \[1/\sqrt{2}\]
I'm not asking for a directional derivative of f at P in the direction of V. I'm asking maximum rate of changing f at P and unit vector in which the maximum rate of changing occurs at P.
ah, sorry. The magnitude of the gradient is the greatest rate of change
\[<1, -2>=\]=\[\sqrt{5}\]
where that is the magnitude (greatest rate)
then the unit vector would be \[<1/\sqrt{5}, -2/\sqrt{5}>\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question