anonymous
  • anonymous
Linear Algebra: Consider orthogonal unit vectors v1->vm in Rn. Show they are necessarily linearly independent. Says to use dot product in proof, but not really sure of an attack strategy here
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The basic way to show vectors are independent is to show their linear combination is 0, and the only such coefficients are all 0. So \[c_1v_1 + c_2v_2 + ... + c_mv_m = 0 \] and we aim to prove all c_n are 0
anonymous
  • anonymous
From the above, we can take any one of {v1, v2...vm}, and dot it with both sides: \[v_i \cdot (c_1v_1 + c_2v_2 + ... + c_mv_m) = v_i \cdot 0\]
anonymous
  • anonymous
The dot product is distributive, so we can dot v_i with each term separately, and on the right side we have 0. Once we distribute v_i throughout, however, every term becomes 0, except the term that matches the vector we used to dot it with: \[v_i \cdot (c_1v_1 + c_2v_2 + ... + c_mv_m) = 0\] \[c_iv_i \cdot v_i\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
(forgot the "= 0" above) The above happens because all vectors are orthogonal, and two orthogonal vectors' dot product are 0, and v_i dot v_i is nonzero, so c_i must be 0. This can be repeated with all vectors, yielding all c are 0, and that's the proof.

Looking for something else?

Not the answer you are looking for? Search for more explanations.