I need to find the partivular solution to the differential equation dy/dx=(1+y)/x Given the initial conditon f(-1)=1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I need to find the partivular solution to the differential equation dy/dx=(1+y)/x Given the initial conditon f(-1)=1

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I love diff equations! =) So first of all see if its separable
it is!
So separate it: \[dy/dx = (1+y)/x\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Sorry, I keep crashing on here but i will always reply: So multiply both sides by dx and divide both sides by 1+y
You will have: \[dy/(1+y) = dx/x\]
can't you think of it as dy/(1+y) you're in good hands later.
Integrate both sides: Left side will be just Ln|1+y| and the right side will be Ln|x|
So: Ln|1+y| = Ln|x| + C
Raise e to both sides to get rid of Ln: \[e^{Ln|1+y|} = e^{Ln|x|+C}\]
Rewrite and simplify: \[e^{Ln|1+y|} = e^{Ln|x|}*e^C\] \[1+y = Kx\]
(e to some constant is another constant so I just let that other constant be K) Now apply initial conditions: f(-1)=1: 1+1 = -1K; 2 = -K; K = -2
So your answer is: 1+y = -2x, or: y = -2x - 1 <= Final answer
Im taking a differential equations course! IT IS FUN!! P.S.: Please click on become a fan if I helped, I really want to get to the next level!! Thanks =)
why do you multiply by e^c
there's a property: \[A^{B+C} = A^B * A^C\], so in our case: \[e^{Ln|x|+C} = e^{\ln|x|} * e^C\]
and e to some constant is another constant so I said let that constant be K. Any other questions?
no and thanks for your help

Not the answer you are looking for?

Search for more explanations.

Ask your own question