anonymous
  • anonymous
(x^1/6y^1/3)^-18
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bahrom7893
  • bahrom7893
x/2y - 18
anonymous
  • anonymous
can you show me how you did that?
anonymous
  • anonymous
he muliplied the exponents

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
to equal -18? or multiplied them to the fractions..
anonymous
  • anonymous
in numerator you have exponent of 1 and in denominiator you have power(exponent) of 1/3 both of them are raised to the power of -18
anonymous
  • anonymous
so for 1/6= 3/18 and for 1/3= 6/18
bahrom7893
  • bahrom7893
woops sorry, i didnt notice to the negative 18
bahrom7893
  • bahrom7893
(x^1/6y^1/3)^-18= (x/6y/3)^(-18)= (x/2y)^(-18)= (2y/x)^(18)
bahrom7893
  • bahrom7893
wait a second is y^(1/3) or (y^1)/3?
anonymous
  • anonymous
\[(x/(6y^(1/3))^-18\]
bahrom7893
  • bahrom7893
imran that doesnt help lol, well whatever if u have A^b raised to c, its equal to A^(bc)
bahrom7893
  • bahrom7893
(A^b)/(A^c) = A^(b-c) (A^b)*(A^c) = A^(b+c)
anonymous
  • anonymous
hmmm. um...

Looking for something else?

Not the answer you are looking for? Search for more explanations.