a double integeration question double integral over limit 1 to and limit 1 to x dydx upon x2 + y2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

a double integeration question double integral over limit 1 to and limit 1 to x dydx upon x2 + y2

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You do a partial integration of the Internal integration, then the same on the external. eg, \[\int\limits_{5}^{y}\int\limits_{3}^{x}(x+y)dxdy\] Would start with you doing: \[\int\limits_{3}^{x}(x+y)dx\] With respect to x, so you pretend y is just a number (a constant). Then do what's left.
\[\int\limits_{1}^{2}\int\limits_{1}^{x} dydx/x^2+y^2\] is the question how to solve
It'll look nicer if you make it: \[\int\limits_{1}^{2}\int\limits_{1}^{x} 1/(x ^{2}+y ^{2}) dydx\] Do the internal part first: \[\int\limits_{1}^{x}1/(x ^{2}+y ^{2}) dy\] Do the integration, which doesn't look too easier, but try substitution. Treat x like a constant, and when you enter your limits you'll be left with all x's. Then do the second integration which''ll be easier.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question