anonymous
  • anonymous
a double integeration question double integral over limit 1 to and limit 1 to x dydx upon x2 + y2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You do a partial integration of the Internal integration, then the same on the external. eg, \[\int\limits_{5}^{y}\int\limits_{3}^{x}(x+y)dxdy\] Would start with you doing: \[\int\limits_{3}^{x}(x+y)dx\] With respect to x, so you pretend y is just a number (a constant). Then do what's left.
anonymous
  • anonymous
\[\int\limits_{1}^{2}\int\limits_{1}^{x} dydx/x^2+y^2\] is the question how to solve
anonymous
  • anonymous
It'll look nicer if you make it: \[\int\limits_{1}^{2}\int\limits_{1}^{x} 1/(x ^{2}+y ^{2}) dydx\] Do the internal part first: \[\int\limits_{1}^{x}1/(x ^{2}+y ^{2}) dy\] Do the integration, which doesn't look too easier, but try substitution. Treat x like a constant, and when you enter your limits you'll be left with all x's. Then do the second integration which''ll be easier.

Looking for something else?

Not the answer you are looking for? Search for more explanations.