anonymous
  • anonymous
Using integration by Parts: Integrate e^(2x)sin(3x)dx. I can't seem to pick the right u and dv. I've trued u= e^2x and dv = sin3x dx. then tried it the other way around
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
That's e^(2x) * sin(3x) ... dx
anonymous
  • anonymous
Google "Pauls Online Math Notes". Then start reading and using example. Good Luck!
anonymous
  • anonymous
\[\int\limits_{}f(x)g(x)dx= F(x)g(x)-\int\limits_{}F(x)g'(x)dx\] Where F(x) in the anitderivative of f(x) \[\int\limits_{}e ^{2x}\sin(3x)dx\] Use integration by parts twice and you will notice a pattern \[f(x)= e ^{2x}, F(x)=e ^{2x}/2, g(x)=\sin(3x), g'(x)=3\cos(3x)\] \[1/2(e ^{2x}\sin(3x))-3/2\int\limits_{}e ^{2x}\cos(3x)dx\] Integrate by parts once more \[f(x)= e ^{2x}, F(x)=e ^{2x}/2, g(x)=\cos(3x), g'(x)=-3\sin(3x)\] \[1/2(e ^{2x}\sin(3x))-3/2\left[ 1/2(e ^{2x}\cos(3x))+3/2\int\limits_{}e ^{2x}\sin(3x)dx \right]\] Notice how this integral looks exactly like the one you started with, apart from the (-9/4) factor, all you do now is equate your original integral with this equation \[\int\limits\limits_{}e ^{2x}\sin(3x)dx=\] \[1/2(e ^{2x}\sin(3x))-3/4(e ^{2x}\cos(3x))-9/4\int\limits\limits_{}e ^{2x}\sin(3x)dx\] Collect like terms: \[\int\limits_{}e ^{2x}\sin(3x)dx+9/4\int\limits_{}e ^{2x}\sin(3x)dx=\] \[1/2(e ^{2x}\sin(3x))-3/4(e ^{2x}\cos(3x))\] so... \[13/4\int\limits_{}e ^{2x}\sin(3x)dx=1/2(e ^{2x}\sin(3x))-3/4(e ^{2x}\cos(3x))\] \[\int\limits\limits_{}e ^{2x}\sin(3x)dx=4/13[1/2(e ^{2x}\sin(3x))-3/4(e ^{2x}\cos(3x))]\] \[\int\limits\limits_{}e ^{2x}\sin(3x)dx=2/13(e ^{2x}\sin(3x))-3/13e ^{2x}\cos(3x))+c\] to check the answer just take the derivative of the right hand side and you will end up with the function in the intergrand on the left hand side, which is what you started with Hope this helps

Looking for something else?

Not the answer you are looking for? Search for more explanations.