anonymous
  • anonymous
solve for T. (d^2)/(dx^2)*T+(d^2)/(dy^2)*T=-2*(pi^2)*sin(pi*x)*sin(pi*y) I think you have to do method of separation of variables and then some eigenvalue/function thing...? But I'm not sure of the exact steps.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Can I walk you through it instead of just doing it for you?
anonymous
  • anonymous
sure, grateful for any help! did i get the method correct?
anonymous
  • anonymous
To be honest, I don't know the names of stuff, but you're correct that you have to somehow separate out the T. If you look at the equation you're given, you see that there are two terms that have T in them, right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes i thought maybe i could do a double integral of (d^2/dx^2)*T=sin(pi*x) and do an analogous equation for the y and then add the two answers
anonymous
  • anonymous
oh wait, is dx a single variable?
anonymous
  • anonymous
I thought this was just algebra.
anonymous
  • anonymous
i mean it as second derivative of T when I write (d^2/dx^2)*T
anonymous
  • anonymous
partial derivatives
anonymous
  • anonymous
oh, okay. I get it now. I just didn't understand the notation written out like that I guess. So yes, double integral is the way to go.
anonymous
  • anonymous
and then just add the two solutions? sorry - dont have a math textbook with me. i think i need a quick refresher.
anonymous
  • anonymous
but remember that when you write the double integral, you have to make sure to include everything on one side, not just the parts you want.
anonymous
  • anonymous
i see. so on the right hand side, i keep the same but then take the double integral with respect to x, and then respect to y?
anonymous
  • anonymous
hold on, this is more complicated than I originally thought, so I'm doing it out on paper first to see how it works.
anonymous
  • anonymous
so I'm not sure exactly how to do this, but I think I can tell you if you're wrong/why something wouldn't work.
anonymous
  • anonymous
ok. so this is what i did before i get stuck: 1. the solution is some generalized u=X(x)Y(y) 2. plug this general solution into the original equation 3. i get: y((d^2/dx^2)*x)+((d^2/dx^2)y)*x = -2*(pi^2)*sin(pi*x)*sin(pi*y) 4. stuck! :)
anonymous
  • anonymous
it's ok i think i'll just move on to something else thanks for your time and effort! i appreciate it. :)
anonymous
  • anonymous
yeah, sorry about that.

Looking for something else?

Not the answer you are looking for? Search for more explanations.