anonymous
  • anonymous
Use Lagrange multipliers to identify the critical points of f subject to the given constraints. (Order the critical points from smaller x to larger x. If the x-values are the same, order the points from smaller y to larger y and finally from smaller z to larger z. Enter NONE in any unused answer blanks.) f(x, y, z) = x + y + z, y2 – x2 = 4, x + 2z = 5
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
well first you to know that \[Gradf=\lambda Grad(g)+\lambda Grad(h)\] There are two different lamdas by the way. One is labeled lamda 1 and the other is lamda 2. So take partials of f with respect to x y and z. Which is 1 for each of them. Hence, <1,1,1>=lamdaone<-2x,2y,0>+lamdatwo<1,0,2> Now you set them equal to each other: CAn you do the rest?

Looking for something else?

Not the answer you are looking for? Search for more explanations.