anonymous
  • anonymous
describe the parameters of the unit circle , and when the particle is moving clockwise/counterclockwise (how do i determine this)in this problem x=cost and y= -sin t
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
First part: the equation of unit circle: x^2+y^2=1 the Pythagorean Trig Identity: [sin(t)]^2+[cos(t)]^2=1 Based on these two equations, I'd guess that the parameters of a unit circle are the absolute values of sine and cosine (x and y respectively). 2nd part: the parameters given simply describe a unit circle with y=-sin(t), since sine is an odd function (odd functions means f(-x)=-f(x)), -sin(t)=sin(-t) so this parametric function travels in the opposite direction of y=sin(t). Thus for all t<0 it is traveling counterclockwise, for all t>0, it's going to be clockwise, and if t=0, then there's no direction. Plug in the typical unit circle angles (pi/6, pi/4, pi/2 etc.) and see what direction it takes to get a geometric explanation.

Looking for something else?

Not the answer you are looking for? Search for more explanations.